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UNIFORM ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF LINEAR
SECOND-ORDER DIFFERENTIAL EQUATIONS FOR
LARGE VALUES OF A PARAMETER

By F. W. J. OLVER
The National Physical Laboratory, Teddington, Middx.

(Communicated by G. B. B. M. Sutherland, F.R.S.—Received 4 September 1957)
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An investigation is made of the differential equations

O = 4w, 5‘&2—1—” = {2+,

dw _1dw MW=
dz2  zdz

in which u is a large complex parameter, x is a real or complex parameter independent of #, and z is

+{2+

ﬂ,Z)} w,

/ |\
A B

2 a complex variable whose domain of variation may depend on arg « and g, and need not be bounded.

— > General conditions are obtained under which solutions exist having the formal series

olm 4, P’(z)

= w= P()Z s T 52: P

E 8 as their asymptotic expansions for large | « |, umformly valid with respect to z, arg # and u. Here
P(z) is respectively an exponential function, Airy function or Bessel function of order y, and the

~w P y p ry 2

coefficients 4, and B, are given by recurrence relations.

1. INTRODUCTION AND SUMMARY

In recent papers (Olver 19544, 1956) I investigated the asymptotic expansion of solutions of

differential equations of the form

T = p(2) +a(2)}w (11)
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480 F. W. J. OLVER ON THE

for large values of the real positive parametert «, which are uniformly valid with respect to all
values of the complex variable z lying in a domain D, bounded or otherwise. The asymptotic
character of the solutions depends on the number and nature of the transition points in D, that
is, points at which p(z) has a zero, or p(z) or ¢(z) has a singularity. Zeros of p(z) are also
called furning points.

Four principal cases were distinguished, denoted by A, B, C and D. In case A, D is free
from transition points; in case B, D contains a simple turning point; in case C, D contains
a double pole of p(z) ; in case D, D contains a simple pole of p(z). In the last two cases ¢(z)
is permitted to have a single or double pole at the pole of p(z). By simultaneous change of
dependent and independent variables equation (1-1) can be transformed into one of the

following forms
d%w

= {u>+f(z)}w (cases A and C), (1-2)
T ez s} (case B), a3
= e @) (case D), (14)

in which g is a constant and f(z) is a regular (holomorphic) function in the transformed
domain. In (1-4) f(z) is an even function of z.
Each of the equations (1-2), (1-3) and (1-4) can be satlsﬁed formally by series of the form

B+ 3 42, D § 50, (15)
s=0 u

in which P;(z) is a solution of the corresponding equation with f(z) = 0, the suffix j being

associated with the particular choice of solution. The P;(z) are called the basic functions and

are respectively exponential functions, Airy functions and Bessel functions of order x for the

three equations.

Existence theorems designated A, B and D were proved, which establish that solutions of
the equations exist for which the formal series (1-5) is an asymptotic expansion, in the sense
of Poincaré, for large positive u, provided that z lies in a certain subdomain D; of the trans-
formed domain corresponding to D. D; is independent of z and can extend to infinity in
regions where the condition

f(z2) =0(|z|717?) (equations (>1-2) and (1-4)),}
£(2) = 0(|z]¥7) (equation (1-3)),

is satisfied ; ¢ being a positive constant.

Any other equation of the form (1-1) which has an isolated transition point and which is
amenable to the same general treatment can be transformed into either (1-2), (1-3) or (1-4).
In addition, Thorne (19574) has shown that the case in which D contains both a simple
turning point and a double pole of p(z) can be transformed into (1-3); the pole becomes
a point at infinity at which the condition (1-6) is satisfied. He has also indicated that the case
in which D contains both a simple and a double pole of #(z) can likewise be transformed into
the form (1-4).

1 For convenience the u of the previous papers is replaced here by w2

(1-6)
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A further case, requiring a new existence theorem, has been investigated by Thorne

(1957b), using similar methods. The standard form of equation is
2 2
= (14 5) - @), (1-7)

where « is a constant, f(z) is even and f(z) = O(|z|~177) at infinity. The basic functions
here are Bessel functions of order au. This equation corresponds to (1-1) when p(z) has
a double pole and a simple zero in D. The branch cut for the solutions which emanates from
the pole is made to pass through the zero, and the regions of validity of the corresponding
expansions include the pole and the fwo turning points, one on either side of the cut.

Although in the papers cited it is supposed that « is a real positive parameter, it is observed
that if u is complex and arg « is fixed then a trivial transformation will convert any of (1-2),
(1-3), (1-4) or (1-7) into the same form of equation with z replaced by |« |. The existence
theorems accordingly apply to the situation when u is large and complex and arg « is fixed.

The principal object of the present paper is to extend theorems A, B and D by establishing
conditions under which the asymptotic expansions are uniformly valid over any prescribed
range of arg u. The need for this extension in cases A and B has arisen in developing an
asymptotic theory for the case in which equation (1-1) contains fwoe simple turning points
in D. The basic functions for this case are the Weber parabolic cylinder functions, being the
solutions of the differential equation

d2
a—ztg = (32%+a) w.

It is desirable to know asymptotic representations of these functions for large values of the
parameter a which are uniformly valid with respect to z and arg a. Such representations can
be found by application of the new forms of theorems A and B given in the present paper.

The desired extension of the existence theorems can be achieved by introducing an extra
parameter ¢ in (1-2), (1-3) and (1-4), replacing f(z) by f(6,z). The equations become

respectively
d?w

I~ w0, 2)}w, (18)
T — ez /0, 2)}w, - (19)
R e | (1-10)

and the coefficients 4,(z) and B,(z) in the series (1-5) are replaced by A4,(0, z) and B,(0, z),
respectively. We seek conditions under which the asymptotic property of this series for
large positive u is uniform with respect to 6 as well as z.

The connexion of this approach with the theory of (1-2), (1-3) and (1-4) for large complex
u is as follows. Consider, for example, equation (1-2). If 4 is complex and 0 = arg u, the
substitutions

u=|u|el, z=ez, (1-11)
transform (1-2) into
d?w . .
&2 {lu]*+ e 2 (e72))} w. (1-12)

60-2
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This equation is clearly of the form (1-8) with u positive and f (6, z,) = e~ 2 (e~¥z,). Infact,
it would be adequate for the immediate purpose if we were to replace f(6,z) in (1-8) by
e~20f(e192). Greater generality is achieved however, with no extra complication, by taking
Jftobeageneral function of the two variables § and z. And although the parameter fin (1-8),
(1-9) and (1-10) corresponds to arg « in (1-2), (1-3) and (1-4) with complex u, when we
consider the asymptotic theory of (1-8), (1-9) and (1-10) we merely regard ¢ as another
parameter, real or complex, either independent of or dependent on the real positive para-
meter u, or even as a set of such parameters.

In establishing conditions under which the formal series (1-5), with 4,(z) and B(z)
replaced by 4,(0, z) and B,(0, z), represents uniform asymptotic expansions of solutions of
equations (1-8), (1-9) and (1-10), itis essential that we permit the boundaries of the z-domain
to depend on #. This is evident from the transformation (1-11) which shows that the
z,-domain is obtained from the z-domain by rotation through an angle 6. We generalize this
relationship and allow the z-domain D(f) associated with (1-8), (1-9) and (1-10) to be
a general function of §. This generalization is of great value in applications since it allows the
boundary of D(6) to be arranged in the most convenient manner for each 6. In particular, it
is usually advantageous to arrange that cuts from branch points of (6, z) are parallel to the
imaginary z-axis in the case of (1:8) and (1-10), and lie along level curves of the function
exp (2z%) in the case of (1-9); the regions of validity of the asymptotlc expansions are then
likely to be maximal.

The proofs given in this paper are simpler in principle than the proofs previously given of
the original forms of the existence theorems; two of the three lemmas concerning the magni-
tude of the coeflicients 4,(f,z) and B,(f,z) are avoided. The simpler method of proof
permits an easy extension to be made to meet the situation in which f(, z) is replaced by
a function f(u, 6, z) having a uniform asymptotic expansion of the form

Flw0,2) 40, 2) 1 PG B (113)

for large u.

Another extension is the easing of restrictions placed upon the boundaries of the regions of
validity. We no longer suppose that these consist of a finite number of straight lines. This is
of particular value in case B, for here we often wish to arrange that branch cuts bounding
D(6) are level curves of the function exp (2z%). In this case, moreover, the previous restriction
that the distances of all points of the regions D;(¢) from the boundary of D(f) must have a
positive lower bound, is replaced by the weaker condition: if z, is a boundary point of D;(6)
then |z, | times the shortest distance between z, and the boundary of D(f) must have a
positive lower bound. This too simplifies applications as we shall see in § 10.

As our final extension, the existence theorem in case D now establishes uniformity with
respect to the variable # occurring in (1+10), when g liesin a bounded region in the half-plane
Repx>0. The function f and the z-domains are permitted to depend on y as well as 6.

Uniform asymptotic solutions of second-order differential equations with a large complex
parameter have been derived by many authors, though usually only for real values of the
independent variable. Cherry (1950), however, develops uniform asymptotic series for
case B with z complex and z lying in a given bounded star-domain. The z-regions of validity
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which result from these conditions are unnecessarily restricted and the greater flexibility in
the choice of boundaries permitted in the present paper yields larger regions in applications,
even in the case of bounded star-domains. Another condition of Cherry’s paper is that the
function f(«, 0, z), defined above, should have a convergent expansion in descending powers
of u2; here we merely suppose that f(«, 0, z) has an asymptotic expansion in descending
powers of u. Other comparisons between the results of Cherry and those of the present
writer have been discussed in Olver 19544, § 7.

Kazarinoff & McKelvey (1956) have investigated an extended form of case C with both
u and z complex. The z-domain is severely restricted however, being the interior of a fixed
simple closed contour. ‘

The present paper is divided into three parts, corresponding to cases A, B and D. The
arrangement of each part follows the same pattern. In the opening section (§§2, 9 and 14)
the problem is stated together with its solution, the corresponding existence theorem. The
postulated conditions are of a rather general form, and to facilitate their application the next
section (§§ 3, 10 and 15) is mainly devoted to an account of common circumstances in which
the general conditions are fulfilled. The proof of each theorem then begins. First (§§ 5, 11 and
17 (i)) bounds are established for the coefficients of the series (1-5) which are uniform with
respect to f and, in case D, #. Next (§§6, 12 and 17 (ii)), a differential equation satisfied by
the truncated series is obtained. Combination of this equation with the original equation
yields a differential equation for the error term of the asymptotic series, and in the final
sections (§§7,8, 13, 18 and 19) an integral equation corresponding to the last-named
differential equation is solved by the iterative method.

In part 3 there is an additional section (§ 16) in which bounds are established for the modi-
fied Bessel functions /,(z) and K ,(z) which are uniform with respect to bounded . These may
be of use in other contexts.

PART 1. CASE A

2. STATEMENT OF CONDITIONS AND THEOREM A
- We consider the differential equation '

= S0, D, (21)

in which u is a large positive parameter; ¢ is a set of real or complex parameters ranging over
a set of values @ ; z is a complex variable ranging over a simply-connected complex domain
D(6), bounded or otherwise.

We suppose that for given « and 6, f(u, 0, z) is a regular (holomorphic) function of z in
D(0), and that

1 k,, _
TF [z (for every m = 0,1,2,...), (2-2)
when ze D(0); 0 ®; u=>u,(>0), independent of z and §. Each of the coefficients f,(0, z) is
independent of 1 and a regular function of zin D (), and ¢ is a positive constant independent
of u, 0, zand m. The number £,, is independent of 4, § and z, but may depend on m; we shall

fu0,2)-"5 L83 <

T Except in as much as 6 may depend on .


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

484 F. W. J. OLVER ON THE

use the symbol £, generically in this sense, and also the symbol £ generically to denote
a positive number independent of , § and z.
The condition (2-2) implies that

© f.(0,z
fud,2) ~ 3 152 (2:)
as u—> + o0, uniformly valid with respect to § and z. We can construct a formal solution of
(2-1) in the form ©
W = euz z A_S(?Slﬁz_z . (2.4)
s=0 u
Term-by-term differentiation yields
| dw © B.(0,z
a—z—- = ue“? sgo S(us ) ) (2‘5)
d?w > Cyb,z
d__z_é_ — uZCuzsgo S(us )’ (2‘6)
where B, = A,+A4;_,, C,=B,+B;_, = A,+24;_+A4;_,, (2:7)

primes denoting differentiations with respect to z. Substituting (2-3), (2-4) and (2-6) in
(2-1) and equating coefficients, we see that the last-named equation is formally satisfied if

Cs+2 = As+2+f;)As+\flAs—l+"'+f9A09 (2°8)
that is, if 245, = — A+ A, 14,1+ S A (2+9)
On integration, this yields 4, = constant, and

Ay = — M [(fidAh A+ A4S A 2 (520). (2110)

This determines 4y, 4,, 4,, ..., apart from arbitrary constants of integration, which may
depend on 4. Each 4, is a regular function of z in D(f), and single-valued since D(6) is
simply-connected. -

We can easily verify that a second formal solution of (2-1) is given by

© ®
w = e ¥z z (__)SA___,_S (uﬁs’z), (2‘11)
s=0
d = B0,
e e 3 (B DD, (212)

where the coefficients are determined by 4F = constant,

A¥, = —%A;’"Jr%—f(ﬁA;"—ﬁA;"_ﬁ---+(—)SJ§A3‘) dz (s=0), (2-13)
and B¥ = A*4- 4% |. (2:14)

If the functions f,(0, z) of odd suffix s all vanish, then 4¥ and B¥ are the same as 4, and B,,
respectively; in particular, this happens when f(u, 0, z) is independent of «.

We define G(f) to be an arbitrary closed subdomain of D(f), subject to the following
conditions.

(i) The distance between each point of G () and each boundary point of D(f) has a posi-
tive lower bound which is independent of 4.
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(ii) For each 0, a point ¢(d) and a path joining ¢(f) and z lying wholly in G(f) can be
found such that

fj(o) T%TIIEI;—III—*‘; <k (2 G(6)). _ (2-15)

The only restriction we impose on the arbitrary constants associated with the determina-
tion of the coefficients 4,(0, z) and 4¥(0, z) is that A {0, c(6)} and A¥{0,¢(0)} are bounded

functions Ofﬁ; thus |As{5a (:(19)} l <ks> I A;"{ﬁ, 6((9)} | <ks‘ (2'16)
In these circumstances, the asymptotic nature of the formal series may be expressed in the

following theorem:

‘Tueorem A. The differential equation (2-1) possesses solutions Wi(u, 0, z) and W,(u,0,z) with
the properties

u, = e¥? ( 2) m+1
Wi(u,0,z) z +0( ):' (zeH,(0),0¢0),  (217)

Wi, 0,2) = e z s( )+0(um+1):|

ool

< Wyu,0,2) = —ue~uz[z )SB*(e 22) +0 () |

Wyfu,0,2) = e $ (=)

+0(
(zeH,(0),0¢0@), (2-18)

as u— + 00, where each of the O’s is uniform with res/)ect to z and 6. Here m ts an arbitrary positive
integer or zero, and Wi (u, 0,z), Wy(u, 0, z) are independent of m.

The regions of validity H;(0) (j = 1,2) are defined as follows. We suppose 4;(0) (j = 1,2)
to be any prescribed point of G(6), or the point at infinity on a straight line £ lying in G(6).
If a;(0) is atinfinity we suppose that | arg{—a;(0)} | <47 (j = 1) and | arga;(0) | <% (j = 2).
Then H; () comprises those points z of G() Wthh can be Jomed to a;(f) by a path £ having
the following properties, ¢ being a typical point of 2.

(i) £ liesin G(0).

(ii) £ comprises a finite number of Jordan arcs, each with parametric equations of the
form ¢ = ¢(r), where 7 is the real parameter of the arc; ¢(r) is continuous and #(7) does not
vanish. If a;(f) is at infinity, # coincides with .# for all sufficiently large | ¢|.

i) | 1———+| ﬁtll“" <k. (2:19)

(iv) Asttraverses 2 from a;(6) to z, Re ¢ is monotonic increasing if j = 1, and monotonic
decreasing if j = 2. ' '

3. REMARKS ON THEOREM A

First, the common circumstances in which some of the conditions given in §2 are fulfilled
are noted.

(i) Condition (2-15) is relatively weak. It is satisfied, for example, if the path joining ¢(6)
and z is composed entirely of straight lines, the total number of which is a bounded function
of z and 0.
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The parametric equation of a typical straight line may be expressed in the form
L= (141d;) etz (A,<7<Ay), (3-1)
where A;, 45, A; and A, are real constants which may depend on @. Clearly |¢|>|7| and

o |de] A dr © dr

R L N ST L P S 2

the left-hand integral being taken over the straight line (3-1).

(ii) Similarly, if 2 is composed entirely of straight lines, the total number of which is
a bounded function of z and ¢, then condition (iii) on £ is satisfied. In this event, moreover,
condition (ii) on £ is obviously satisfied as well.

We may note in passing that condition (ii) on & demands rather more than that each arc
of # be a regular Jordan arc, for which only #'(7) need be continuous.

(iii) Tt may happen that the inequality (2-2) holds only for m < M, where M is a positive
integer or zero and independent of z and 4. In this event it can be deduced from the proof of
theorem A given in §§ 5 to 8 that the relations (2:17) and (2-18) hold provided that m <M.

(iv) The method of proofof theorem A, given in §§ 5 to 8, is not immediately applicable to
the extended case in which the asymptotic expansion (2-3) contains the additional term
uf_,(0,z). Langer (1949) has derived formal series solutions of the differential equation in
this case and indicated their asymptotic nature when zis real and bounded. An extension of
Langer’s result to the equation o

Py ot Dl

where p is a positive integer, has been given by Erdélyi (1956), again for real bounded z.

4, LEMMA ON ASYMPTOTIC SUMS

We shall require the following result.
LemMma. Let ¢o(0), $,(0) ... be a set of functions satisfying the condition

|4,(0) | <6, (0O,5=0,1,...), (41)

where cyyCy, ... are independent of u and 0. Then there exists a function ®(u, 0) with the property

o(u,0)~ 3 20 (42)

as u-> + 0o, uniformly valid with respect to 0.
This result is known from the general theory of asymptotic sums (Van der Corput 1956,
p- 391). It suffices here to remark that the function

v(u) g
ou,0) =3 240, | ()
where v(u) is the largest integer such that

\ oot e +r(U) <u, (4-4)
has the required property.
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5. BOUNDS FOR THE COEFFICIENTS
Inequality (2-2), with m = 0, means that

k

| f(u,6,2) | <'1-_|_'W:,; (ze D(0), u=u), (5-1)

and for m>1 the same inequality establishes the equation

— gqm—1 fs‘(a Z)} wkm .
fm—l(a,z) = Uy {f(uo"93z) 2 (1+lzl1+q-)u ’ (5 2)
where @ is a number such that |@|<1. If m = 1 the sum is absent, and with the aid of
(5-1) we deduce that k

ol0:2) | < iz (2¢D0O)- (5:3)

From these three results we readily show by induction that

. ' ks

|/:(0,2) | < iz (zeD(0),5=0,1,...), (54)

where £, is the generic symbol denoting a quantity independent of z, § and u, but which
may depend on s.

We use these results to establish the following properties of the set of coefficients 4,(0, z)
defined by (2-10).

LeEMMma

\A,(0,2) | <k, | 48,2) | < —Fs

ko

1‘|‘| ll-l-a' 1+lz|l+o-

This, also, may be proved by induction. Let d(>0) be the shortest distance between
the boundaries of D(f) and G(f) for all § (cf. §2, condition (i) on G(f)). We define
G(0,8) (0<d<d) tobe G(0) plus the aggregate of all points whose distance from a boundary
point of G(#) does not exceed J. Clearly G(6,9) is contained in D(6).

Wenote that if ze G(6, §) there exists a path joining ¢(f) and z, lying in G(6, ¢) and having
the property : 2 | dt|

fc(ﬁ) 14 [¢[1+e

For if ze G(0) this is one of the conditions on G(f). If z is any other point of G(6, J) then z,
exists on the boundary of G(f) such that |z—zy| <J; we take the path in (5-6) to be the
known path joining ¢(f) and z,, plus the join of z, and z.

Let us suppose, temporarily, that

| 47(0,2) | < (ze G(0)). (55)

<k. (5-6)

, kn -
IA,,(H,Z) I<I_W (ZG G(ﬁ,c?),n:-o, 1,...,3). (5'7)
Clearly -
A,(6,2) = f 40,0 dt+4,0,0(0)} (5-8)
c(®
If ze G(0,8) we may take the path of integration to be that of the integral on the left of
(5-6). Then substituting (5-7) and the first of (2-16) in (5-8) and using (5-6), we find that
> |4 _ _ :
lAn(ﬁ:z) l<knjc(0) 1+ l ¢ ll+¢r+kn - kkn+kn - kn' (5 9)

61 VoL. 250. A.
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Let 5 be an arbitrary number, 0 <y <d. Then G(6,7) is contained in G(0,d). Cauchy’s
integral formula shows that

A(6,7) — 45(6,2)

2711 li—z|=8—9 (t—2)2
If, now, ze G(0, ), then te G(0,0). [This is obviously true if ze G(#). If zis any other point
of G(0,7) then there is a point z, on the boundary of G(f) such that | z—z, | <#. Hence
|t—zy| = | (t—2) 4+ (2—2zy) | <d—n+n =0.] We also have

14| 2147 _14(|¢]+0—p)"*
1+lt‘l+¢r\ 1_|__|t|l+a'

Substituting (5-7) with # = s,in (5-10) and using (5-11), we deduce that

dt. (5°10)

<k. (5:11)

dt |
A6, |
I ( z)|<271 li-2|= 8—17lt zl2(1+lt|l+¢r) |
kk, | dt | kk
<2n(1+|z["7) s , (512
2m 1+IZ|1+”)f|t—z1 oy [E—2]2 (6—p) (1 +[2]T) (5-12)

provided that ze G(d, ). Finally, substituting this result, (5-9) and (5-4) in (2-9), we obtain
(3_”)_lkks+k0ks+klks—-l+”‘+ksk0~ ks+l

|2A +l(0 )|< 1+|Z|1+o- _1_|__]zl1+o' (ZGG(ﬂ’”))'
The truth of the lemma is now evident. ‘
6. EQUATION SATISFIED BY THE TRUNCATED SERIES
We define ( 0 z)
: L,(u,0,z) = e* Z (6-1)
Differentiating with respect to z and suppressing arguments on the right-hand side, we
obtain ,
d B, 4,
G Lnw,0,2) —ue( 3 Zei ), (6-2)
d? C,  24,+4,_ , A,
Talaln,0,2) = wers( 3 ey Fonlinat  Za ) (63)
Hence we have
d? '
d_z—“’L’"(u’ 0,z) —{u?+f(u,0,2)} L, (u, 0, z) = e**R,, (4,0, 2), (6-4)
where  Ry(u6,2) = w3 Gy Batun Lu)gaisu )3 L (o9)
and is a regular function of z in D(6).
The inequality (2-2) implies that
m—1 ]‘; ka )
S, 0,z) = 2 +(1—+Wl+a)‘— (ze D(0)), (66)

when u>u,, where |@|<1. Substituting (6-6) in (6-5), we find that the coefficients of
u?,u, ...,u~™*! vanish as a consequence of (2-8) and (2-9), and with the aid also of (5-4) and
(5-5) we easily show that

|Ry(0,0,2) | <+ it (26 G(0), (67)

1+ l z |l+a- um
provided that u>u; henceforth we accept this restriction.
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7. PROOF OF THEOREM A: 4;(f) FINITE

A proof only for the case j = 1 will be recorded. An exactly similar proof holds for j = 2;
alternatively, the result for j — 2 can be deduced from that for J =1 by means of the
transformation z’' = —z.

In this section we suppose that a, _al(ﬂ), definedin§2,is a pomt of G(f) which is not at
infinity. The necessary modifications when q, is at infinity are considered in § 8.

From (5-5) and the first of (2-7), we see that

| 4,0, ) | <k, | By(0,a)) | <k (7-1)
The lemma of §4 shows that functions A(u,0) and B(u,f) exist havmg the asymptotic
expansions
Alu, 0) ~ A (0 “1) B(u,0) ~ z (0 al) (7-2)
3‘=0 : =0

as u—> -+ 0o, uniformly valid with respect to . We define W,(u, 0, z) to be the solution of the
differential equation (2-1) satisfying the conditions

W (1, 0,a,) = e A(u, 0), [d (4,0, z] | — uewn B, 0). (7-3)
z=m

From (2-1) and (6-4) we obtain
e 2{W(Z) L,(2)}— {u2+f (@2} {Wi(2) —Ln(2)} = — Ry (2), (7-4)

where W,(z) = W;(u,0, z) and the arguments « and § of the other functions have similarly
been suppressed.

Let z, be a point of the region H, (f) defined in § 2, and let {be a typlcal point of the path &
joining z, and q,. In order to establish the asymptotic properties (2-17) we solve, by succes-
sive approximation, an integral equation equivalent to the differential equation (7-4). We
introduce a sequence of functions 4, ,(%, 0, z,, {) =4, ,({) defined by #,, o({) = 0 and

) = g [ (50— () g s ()= R (D) bt ™6 (n21), - (75)

where the path of integration is the part of # between { and a,, and a,, §,, are determined
by the conditions

P, (1) = Wi(@)—Lu(@),  kyala) = Wila)) —L(a)). (7-6)
By differentiating (7-5), we readily verify that
(d/AL?) by, n(8) — P, o(C) =f (€) b, =1 () — €4 R, (E)  (n2>1) (7-7)

(cf. (7-4)).
The quantities a,, and §,, are independent of ; in fact from (7- 5) (7-6), (7-3), (6-1) and
(6-2) we obtain - -

Oy etal _l_ﬂm c—ual :’eual{A(u, 0) _ g s( )} eua10( -m~ )

z (0 al) A;:l(rf+lal)} eual'O(u*m~l)’

s=0

(7-8)

s e = e B(u, 0) —

61-2
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490 F. W. J. OLVER ON THE
where the O’s are uniform with respect to §. Solving these equations, we see that
2, =0@w™), f,=eru0(u ™1, (7-9)
Hence
| o, €48 | <k,um1|e%|, | e | = | vt | O(u—m" 1) <k,u ™1 |e¥|, (7:10)
since Rez,>Re{>Ret>Reaq,, ‘ (7-11)

in consequence of condition (iv) on £, given in § 2.
Next, we have from (7-5)

14
() = — 5 [ (e — O} R, (1) At 00+ B 07, (7-12)
ap

From (7-11) we deduce that | enr-p) | < |’e"§ ] : (713)

and using this inequality and (6-7), we see that

4 d¢ 2kk
[ - emnga] i ] ] B, a0

in virtue of (2:19). Substituting this result and (7-10) in (7-12), we obtain

| 2, 1 () | <[ €. (7-15)
From (7-5) we have also

}zm, n+l(€) _hm, n(C) = }&fg {eu(g—t) - eu(t—{)}f(t) {hm, n(t) ”hm, n—-1 (t)} dt (n = 1) . (7.1 6)

Taking n = 1 and substituting (5-1) with z replaced by ¢, (7-15) with { replaced by ¢ and
(7-13), we deduce that
I km, 2( )— m, l(g) [<kkmu—m~2 I e I'
Continuing the argument by induction, we establish the key result
Ny n1(8) =, o(§) | <Epfrum "t || (n=0,1,...), (7-17)

where k,, and £ are of course independent of z as well as of u, 4, z and (.
Thus the series o ‘
T= "Z:O{hm, n+1(€) _hm, n(g)}

converges if, as we shall now suppose, «>k. We shall prove that its sum is W;({) — L, (). In
the method of proof used previously (Olver 19544, §10; 1956, §§ 12 and 13) this was achieved
quite easily by tacitly supposing that the region corresponding to H, (¢) is, in fact, a complex
domain, i.e. an open connex set of points. Term-by-term differentiation of the series 7"is then
valid within the domain, and it follows immediately from (7-7) that T satisfies the same
differential equation (7-4) as W(z) — L,,(z). Therefore, because of the boundary conditions
(7-6) imposed at a,, the two functions are equal in H, (¢). The present proof does not depend
on assumptions of this kind concerning the nature of the region H,(f).
Differentiating (7-12) and (7-16) with respect to ¢, we find that

a0 = = 5[ (@8O R (1) dt Loy uet—fyue (7-18)

and 1/, n+1(€) — ki, () = f {e1€=04 =0} f(8) (b, n(8) — by, na (D}t (n=1). (7-19)
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Using (2-19), (5-1), (6:7), (7-10), (7-13) and (7-17), we may show that

| B, 041 (6) = Hon, (8) | <kphrum=n[ €| (n=0,1,...). - (7-20)
And from (7-17), (6-7), (5:1) and the relations
Hin, 1(§) = WPy, 1(§) — € R, (0), (7-21)

Fimyn31(0) =i, (£) = 03l 41(8) =P, (O3S (©) U, n(8) =P, (O} (0=21),  (7:22)

obtained from (7-7), we deduce that
i1 (8) = B, o(0) | <Bphrum=n*t| e | (n=0,1,...). (7-23)

Thus the series § {Fir, ni1(0) — i, ()} converges, and from (7-21), (7-22) it is seen that
n=0

3 i, (O =B (O} = S (O} 3 b, i1 (§) — P (O} — €% R Q). (7:24)
Condition (ii) on £, given in §2, affirms that £ has a parametric equation of the form

(={1) (ro<7<Ty), (7-25)

where 7, and 7, correspond to a; and z,, respectively. The function {(7) is continuous and
{'(7), {"(7) have only a finite number of discontinuities in the interval 7,<<r<7,. The series

S(7) = 3 [ i)} 6] (720)

is accordingly a uniformly convergent series of continuous functions when To<ST< T, and we
may multiply both sides of this equation by {’(7) and integrate term by term to obtain

f S(r) ¢ (r) dr+ K, \(ay) =§0 U wdll = EOH. (7:20)
Similarly ’ |
f { f S(r) {'(r) dr+k, l(a,)} ¢(r)dr+h, \(ay) = éjﬂ[hm' wetllT = b L] = T(r),
(7-28)

say. Differentiation of the last equation with respect to 7 yields

T"(r) —{'()E (1)} T" (1) = {{'(1)}*S(7)
={{ NP HLONTE) - (P e R, {((1)},  (7-29)
on substituting for $(7) by means of (7-26) and (7-24).

Equation (7-29) is a second-order differential equation for 7(7). Since, by hypothesis,
{’(r) does not vanish, all the coefficients are continuous except at the discontinuities of g'(7)
and {’(7), i.e. the junctions of the Jordan arcs. Substituting z = {(7) in (7-4), we see that the
function Wi{{(7)}— L,{{(7)} satisfies exactly the same differential equation. Moreover, from
(7-6) we note thatat 7 = 7y, i.e. at { = a;, T(r) and 77(7) are respectively equal to the values
of Wi{¢(r)}—L,{{(7)} and its 7-derivative. Since a linear differential equation with con-
tinuous coefficients has a unique solution corresponding to given initial conditions (Ince
1944, § 3-32), it follows that

T(r) =W{{("}—L,{{()},  T'(r) = (d/dr) [Wi{{(r)} — L, {L(n)}], (7-30)
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along the arc with terminal point 7,. At the junction of this arc with the next, 77(7) is con-
tinuous but 77() is discontinuous. However, 77()/{'(r) and Wi{{()}— L,{{()} are both
continuous. Accordingly, equations (7:30) hold across the junction and therefore also along
the second arc. Extending the argument, we see that equations (7-30) hold along the whole
of 2.
In particular, at 7 = 7., i.e. at { = z;, we have
Wl(zl) —Lm(zl) = T(Tl) = 2 {hm, n+l(zl) —km, n(zl)}a

n=0

. - (7-31)
Wi(zy) —Lu(z,) = T'(1))[{' (1)) = ngo{h;"’ n+1(21) ”“h;n, n(zl)}"

If we suppose that u> 2k, we deduce immediately from these results and (7-17), (7-:20) that

|Wi(21) —Ly(2)) | <knu~m'| e | % 27" = 2k, u~m1 e |,
=0 (7-32)

| Wi() —~Laz) | < k™ | 049|527 = 2y | e,

These are the desired results.

8. PROOF OF THEOREM A: ¢;(f) AT INFINITY .
- We now suppose that @, =g, (0) is the point at infinity on a straight line % lying in G(f).
Relations (5-8) and (5:5) show that 4,(f, z) tends to a limit 4(0, a,), say, as z—a, along Z,

and that | 4,(0,a,) | <k, - (81)
Therefore, by the lemma of § 4, a function A(x, #) exists having the asymptotic expansion
Au,0) ~ 3 200, (89)

as u— -+ 00, uniformly valid with respect to 0.
We define W, (u, 6, z) =W,(z) to be the solution of the differential equation (2:1) with the
properties ,

Lim {e-=W,(u,0,2)} = A(s,0),  lim{e-+(d/dz) W;(u,0,2)} = ud(s,60),  (83)

as z—>a, along #. At this stage we do not know whether such a solution necessarily exists.
There can be at most one such solution, however. For suppose W (z) were a second solution
with the same properties. Since |arg (—a,) | <} (cf.§2), it follows that W;, Wi, W]’ and
W3 all tend to zero as z—>a,; accordingly the Wronskian of W, and W7 vanishes.

We define the sequence £, ,({) by 4, 4({) = 0 and
€)= gy [ {460~ H B S () by s ()~ Ry (D} i+t (n21)  (8:4)
u ) o
(cf. (7-5)), where t, = A(u,0)— 3, 45(‘241*). (85)
=0

Here { is again a typical point of the path & joining 4, and z,, and the path of integration
in (8-4) is the part of # between { and a,; it coincides with & for all sufficiently large 1|
(cf. §2, condition (ii)). '
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Equation (8-4) corresponds to (7-5) and the analysis of § 7 between (7-5) and (7-24) can
be repeated here with trivial changes; in particular the relations (7-17) and (7-20) to (7-24)
are again satisfied.

The parametric equation of # is of the form (7°25) but with 7, = — oo of necessity, since
{(r) is continuous and therefore finite with 7. Term-by-term integration of a uniformly
convergent series over an infinite interval is permissible if the same operation on the moduli
of the terms yields a convergent series (Titchmarsh 1939, §1-77). If u>£ this condition is

satisfied by the series on the right of (7-26) multiplied by {’(7), because fT | e {'(1) | dr
converges. Therefore we have

T

LSO ) dr= 3 gl =, O, (86)
corresponding to (7-27), and similarly

[ A s e@ane@dr = 5 tha, sl b G0N = T@), (87
corresponding to (7-28). Differentiation of (8:7) again yields (7-29).

We now examine the behaviourof 7(7) as 7— — 00. Since £ coincides with the straight
line Z for all sufficiently large | {|, it follows that if ¢ is an arbitrary positive number then

g(r) . d:
fal 1 +| b |ll+a' <6, (8-8)
for all 7<7(¢) (assignable). With this restriction, we derive from (8-4), with n = 1,
Q=] = | [* fesi—emopr, (| < e, (s9)
in consequence of (6-7), (7-13) and (8-8). Similarly, if n>>1 we have

Q) = ) | = | | (60— CH0 () ) (0}
<ek, kru—mn=1| el |, (8-10)

in consequence of (5-1), (7-18), (7-17) and (8-8). Therefore, if u> 2k, it follows that

m, n+l(€) “km,n(g)}—“m ext

Again, equations (7-18) and (7-19) still hold here provided that we set £, = 0in the former,
and from them we deduce that

<2k, u"m1|e%|. (8-11)

{b;n,n-i-l(g) “}l:n, n(C)}'—(xmueug <2€kmu—m l et I (8.12)

1M

(cf. (8:11)). The inequalities (8-11) and (8:12) show that ;
e 4T (1) >a,, e~ {T" (1) /L' (1)}~ a,,u, (8-13)

as 7—> — Q0.
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Let Wi(z) be the solution of the differential equation (2-1) satisfying the conditions
Wi(z) = T(n)+L,(z1),  W¥'(z) ={T"(r)/ ()} +Lon(21), (8:14)
Then WH#{(7)}—L,{{(r)} satisfies the differential equation (7-29), and since at 7 = 7, this
function and its 7-derivative are respectively equal to 7(7) and 77 (7) it follows as in § 7 that
T(r) = W} — L8N} T'(7) = (dfdr) IWFE(D}— L8}, (8:15)

for all 7 in the range — oo <7<7; (cf. (7-30)).
Letting 7—> — 00, we obtain from these equations and (8-13)

lim{e-“W¥({)} = a,,+lim{e L, ({)} = A(u,0), }
lim {e %W ()} = autlim (e L, (0)} = ud(w,0),

on substituting (8:5), (6:1), (6-2), and using the equations 4;(6, 4,) = 0, B(6, a,) = A4,(6, a,),
obtained from (5-5) and the first of (2-7).

Referring to (8-3), we now see that the solution W] (z) does exist; in fact, W;(z) = Wi¥(z).
Equations (8-15) show that equations (7-31) again hold, and from them we deduce the
inequalities (7-32) as in § 7. This completes the proof.

(8-16)

PART 2. CASE B
9. STATEMENT OF CONDITIONS AND THEOREM B

Where possible we shall shorten statements and proofs by reference to the corresponding
results for case A given in part 1.
The standard form of differential equation for this case is

‘?1—“’ 2,0, 2)}w (9-1)

~ (cf. (1-9)), where (as in part 1) « is a large positive parameter, fe ®, ze D(), a simply-
connected complex domain bounded or otherwise. We suppose in addition that D(6)
contains the circle | z | <, where 4 is positive and independent of zand .

- We assume that f(u, 8, z) is a regular function of z in D(f) and that

£ (0 z) 1 ko

f(u,B,Z) sg() . 1+IZ|'}+U‘ ym

(cf. (2-2)), for all ze D(0), §e©, u>u, Each coefficient f(f,z) is independent of u} and
regular in D(f), and the symbols ¢ and £, have the meanings assigned in § 2.

Formal solutions of (9-1) in inverse powers of « are given by

(m=0,1,2,...) (9-2)

3
v Ci(utz) Z 3(0 Z)+Cl (u z) & Z B, (:; ,2) (9-3)
s :
(cf. (2-4)), where Ci(u¥z) is any solution of the Airy equation
& Gitz) = w2 i), (9-4)

dz2

1 Except in as much as 6 may depend on .
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and the coefficients 4,(6, z) and B,(0, z) are to be determined. Term-by-term differentiation
of (9-3) and use of (9-4) yields

dw

)
~—
-

0 _ Giutz) § 192) Liaciv(uiz) 3 2llo2 (9-5)
z s=0 5=0
2 ©
% — w2Ci(uz) P 3 50.2) i (usz) 3 502), (9-6)
s=0
where C,=A,+zB,, D =A-+B;_,, (9-7)
E,=C, ,+zD = A,_,+2zA +2zB;,_,+B ;2,} (98)
F,=C,+D;=24,+B;_,+2B..
Equation (9-1) is formally satisfied if
Es+2 = ZAs+2 +.ﬁ)As +fi As-—l +.. +f.;AO’} (99)
| ‘Fs+2 = ZBs+2+j;)Bs+.les—l+ +j.;BO
Substituting (9-8) in (9-9), we obtain
2zB;+ B, = — A+ A, +f1 4, 1+ S 4y (9-10)
24,0 = —B{+fyB,+f1B,_1+ ... +f,B,. (9-11)
Integrating these equations, we find that 4; = constant, 4, = constant, and
B, — 3z [ 2 A fy A fidy s+ ) d, (9-12)
Ayso = =3B+ 3 [ (B AfiBort 4. By) d (913)

Except for the presence of arbitrary constants of integration in (9-13) these two equations
determine a set of functions 4,(6, z) and B,(0, z) which are regular and single-valued in D (9).
We note that if the coefficients f;(0, z) of odd suffix all vanish, then we can arrange that the
same is true of 4,(0, z) and B,(0, z), i.e. the series occurring in (9-3) contain only even powers
of u~1; in particular, this happens when f(x, 6, z) is independent of u.

We prescribe G(f) here to be a closed subdomain of D(f), having the properties;

(i) G(0) contains the circle | z | <b.

(ii) The distance between each boundary point z, of G(f) and each boundary point of
D(6) is not less than d/| z, |}, where d is a positive constant, assighable independently of 6.

(i) [ Y <t (zeGO)), (9-14)
for some path lying wholly in G(6), where £ is the generic symbol denoting a number inde-
pendent of u, § and z (cf. §2), and

o, = min (7,3). (9-15)

We suppose that the arbitrary constants associated with the determmatlon of the coefti-
cients are such that - | A46,¢(0)} | <k, (9-16)
where ¢(f) is a prescribed point of G(0) (cf. (2:16)).

62 Vor. 250. A.
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496 F. W. J. OLVER ON THE
Using the notation
P(z) = Ai(z), BPy2) = Ai(ehiz),  Py(z) = Ai (e-Hiz), (9-17)

for the Airy functions (Olver 1954 a, equations (4-6)), we can now state the existence theorem:

TurOREM B. The differential equation (9-1) possesses solutions Wi(u,0,z) (j = 1,2,3) with the
properties

Wi(u,0,2) = P,(u2) éOAS(g;Z) +0( m+l)]+ J(u%z)[’:‘:B (Z’ z)+1+1|2|1}0(£,7,)(], |
9:18

W09 = B[S S0D 42 of 1) [rum e 3 202 o( )],
(9-19)

as u— + 00, valid when ze H,(0) and O ©, each of the O’s being uniform with respect to z and §. Here
m is an arbitrary positwe integer or zero and W(u, 0, z) is independent of m.

"The regions of validity H;(0) (j = 1,2, 3) are defined as follows. We take a;(f) to be any
prescribed point of G(6), or the point at infinity on a straight line & lying in G(f). If ;(f) is
at infinity we make the restriction

larg{p;a;(0)}|<3m,  where p=1, py=eir,  py=eii (9-20)

"Then H;(#) comprises those points z of G(¢) which can be joined to ¢;(f) by a path £ having
the following properties; ¢ being a typical point of 2.

(i) 2 liesin G(6). ‘

(ii) £ comprises a finite number of Jordan arcs, each with a parametric equation of the
form ¢ = #(1), where 7 is the real parameter of the arc; ¢"(7) is continuous and ¢ (7) does not
vémjsh If a;(0) is at infinity, £ coincides with % for all sufficiently large | ¢|.

111) f 1 +I ﬁtlllwl <k. - (9-21)
) As ¢ traverses 2 from a,(0) to z, | exp {3(p;#)¥} | is monotonic decreasing, where p; is
deﬁned by (9-20).

10. REMARKS ON THEOREM B

In applications of the theorem many of the conditions are conveniently interpreted by
vtransformation to the x-plane, where x =22, (10-1)
the principal value being taken; examples of this interpretation are given below. Tt is less
~ convenient, however, to develop the theory with  as primary variable in place of z, because
the transformed differential equation has a singularity at x = 0; moreover, it would be
necessary to consider the two-sheeted region |argx | <$m.

(i) If the distance between the boundary points of G(¢) and D(f) has a positive lower
bound ', condition (ii) on G(¢) is fulfilled with d = 4*d’; thisis a consequence of condition (i)
on G(#). Condition (ii) is less restrictive than the corresponding condition given in § 5 of
Olver 1954a. Effectively the new condition means that the distance between the boundaries
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of the x-maps of G() and D(f) has a positive lower bound, but because of the two-sheeted
nature of the x-maps the precise formulation of the condition in this form is complicated.

A typical example of the greater usefulness of the new form of condition occurs in Olver
1954 in an application to Bessel functions of large order. If D(6) is taken to be the {~-domain
corresponding to | arg z | <m (19545, equation (4-6) and figures 3 and 6), then the {-domain
corresponding to | argz | <m—e< fulfils condition (ii) on G(f) but not the conditions of
Olver 19544, §5.

(ii) Condition (iii) on G(0) is satisfied if the path joining 0 and z is composed of straight
lines, the total number of which is a bounded function of z and ¢. This is clear from § 3 (i).

The same condition is also satisfied if the x-map of the path is composed of a bounded
number of straight lines. For the parametric equation of the curve in the z-plane corre-
sponding to a typical straight line in the x-plane may be expressed in the form

z=2(r) = §r+id) NP (A<T<Ay), (102)
where 4, A,,1; and A, are real constants. Clearly
2|>@|r)*=]r[t and |dz| = |z|bdr<|r|Fdr.
Therefore we have

|dz f 2J‘°° dr _
I—I—IZIH"”\ ASIT|§(1_|_17-|§+%0'1) 07-%(1 +T§+§o'1) 4

(10-3)

which proves the statement.

(iii) Similarly, condition (iii) on Z is satisfied if Z consists of a bounded number of straight
lines, or if the x-map of 2 consists of a bounded number of straight lines plus the ¥-map of &
(should a;(0) be at infinity).

In these circumstances moreover, condition (ii) on  is satisfied as well. This is imme-
diately clear from (10-2) unless A; = 0 when z’(7) and z"(7) each become infiniteat 7 = 0. In
this event, however, the path passes through the origin and the corresponding z-curve
comprises two rays emanating from the origin, in directions differing by an angle £7. We
have already seen that the condition is satisfied on each of these rays.

(iv) With j = 1, condition (iv) on # implies that in the x-plane Rex is monotonic
decreasing as we proceed along # away from the map of ¢,(¢). Similar interpretations hold
for j = 2 and 3. »

(v) Iftheinequality (9-2) holds only for m << M, where M is a positive integer or zero and
independent of # and ¢, then (9-18) and (9-19) hold unchanged for m <A —1. They also
hold for m = M, provided that the error terms O(z~™~!) and O(x~™) in (9-18) are changed to
O(u~M-%) and O (u~M+%), respectively, and the error terms O (z~™) and O(z~""1) in (9-19) are
" changed to O(z~**%) and O(u~*-%) respectively. This result follows from the inequalities
(13-26) given later. Other forms of the error terms are indicated by relations (13-23) and
(13-24).

(vi) Langer (1949) has developed formal series solutions of (9-1) in the extended case in
which the asymptotic representation (9-2) contains the additional term uf_,(, z), and has
established their asymptotic nature for real bounded z.

62-2


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

' \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

498 F. W. J. OLVER ON THE

11. BOUNDS FOR THE COEFFICIENTS
From (9-2) we deduce that

|f(4,0,2) | < (ze D(0), u=u,), (11-1)

_k
1+ |z |t

kg

and | (0, 2) iz

(zeD(0),5s =0,1,...), (11-2)

(cf. (5-1) and (5-4)).

In order to establish bounds for the coefficients 4,(0, z) and B,(6, z) analogous to (5-5), we
introduce an auxiliary region G(6, ) defined as G(6) plus the aggregate of all points whose
distance from a boundary point z, of G(6) is less than & | z, | ~%. We restrict

0<d<min (d, 36%). (11:3)

Clearly G(0, d) is contained in D(6), and if 7 is an arbitrary number such that 0 <z <4 then
G(0,0) itself contains G(6, 7).
As a preliminary we prove that if ze G(0,7) and | z | = b, then G(0, 0) contains the circle

|t—z|<k(@—1) | z|™, (11-4)
where k= (14+db=¥)-%, (11-5)

Suppose first that z is a point of G(6, 7) not contained in G(). There then exists z, on the
boundary of G(f) such that | z—z, | <7 |z, |}, and for points ¢ satisfying (11-4) we have

lt—2| = | (t=2)+ (z—20) | <k(d—1) | 2|47 | 2 |, (11-6)
Now |20 = [ (2o—2) +2]<n|z | +|z]|<|2z] (d1+1) = 2]«

Thus « | z|"¥<| z, |}, and substituting this inequality in the right of (11-6) we see that
|t—z,|<8]zy| %, and hence that te G(6,9).

Alternatively, suppose that ze G(¢). Then if £ is a point of the circle (11-4) which is not
itself contained in G(f), there must be at least one boundary point z, of G() on the join of
t and z. In this event |

20| = | (20—2) +2| < |t—z|+| 2| <k(@—1) | 2| P+ | z| <| 2 [{1+ (8 —1) | 2|,
since k <1. Therefore | z,| <|z|«~2. From this result and (11-4) we obtain
|t—zo | < [t—z|<k(8—n) | 2| F<(8—1) | 25| <] 2 | %

This completes the proof of the statement that G(0, ) contains the circle (11-4).
A further observation concerning points z of the region G(H d) is that a path joining z and
¢(0) exists lying in G(ﬂ d) and having the property

2 | dt| )
Lw, i [ <k (11-7)

z z c(0)

For if ze G() we setf = f ——f , taking the paths of integration in the right-hand
c(0) 0 0

integrals to be those postulated by (9-14). If z is any other point of G(, §), then z, exists on
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the boundary of G(6) such that | z—z,|<d|z,|?; we take the path in (11-7) to be the
known path joining ¢(f) and z, plus the join of z, and z; on the latter

;ﬁ%qz—zﬁ] <dbt =k,
-LEMMA
| 4,(0,2) | <k, | 43(6,2) | < I—J;Tl;*[m“ | 45(6,2) | < ‘—lﬁ“pm
k k, k (11:8)
IBS(9,2)|<m= | Bs(0,z) |<1+[ ¥ IB;’(‘?’Z)|<'1‘_’TZSFA,
when ze G(0).

This corresponds to the lemma of § 5 and we prove it in a similar manner. Let us suppose

temporarily that
Ky
1+ l z |1+o’1

Clearly A,(0,2) = f zm AL(6,8) dt + 4,00, ¢(0)). (11-10)

Ifze G(0, &) we may take the path of integration to be the same as that for the integral (11-7),
and substituting (9-16) with s = n and (11+9) in (11-10), we deduce that

| de]

| 4,(0,2) | < (26 G(6,0),n.=0,1,...,5). (11-9)

4,6, | <k | G <k, (2<G(6,0) (11-11)
(cf. the first of (11-8)). k
From Cauchy’s integral formula we have
" A6,
45(0,z) = o= o z)g ds, (11-12)

in which we may take the path of integration to be the circumference of the circle (11-4). If,
now, ze G(6,7) and | z| >, then as we have seen above te G(6,8). Moreover,
8] = |2+ (t=2) |=| 2| —«(@—n) | 2| > | 2| 1 =x8| 2| ) > | 2| (1 —xb~H) >} | 2],
(11- 13)
since k<1 and §< b (cf. (11:3) and (11-5)). Substituting (11-9) in (11- 12) and using
(11-13), we find that
” il n | dt I kn I z |% kn
|A,, 0,Z | <2ﬂfl+|tll+”‘ I t—z|2<1+|%z]”‘”l<(3 7]) l—l—]z l§+a,
(cf. the third of (11-8)). This result has been proved for ze G(6, ) on the assumption that
| z| >b. Application of the maximum-modulus theorem shows that it must also hold for
|z | <b.
From (11-14), (11-11) and (11-2) we deduce immediately that

| —42(02) +£o(0, 2) 4,6, 2) +... 11,0, 2) 4o(0,2) | < ;

(11-14)

L

L+ |z [
Now consider formula (9-12) for B((f, z), with s replaced by n. If | z | <5 the path of integra-
can be taken to be the join of z and the origin. Then clearly

1B,6,2) | <324 e Bl UL g o i <k, 1
0 0

L+ ||+

(11-15)
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Alternatively, suppose that z is a point of G(6, ) outside the circle | z| = 4. Then (11-7),
with ¢(f) replaced by 0, shows that a path exists joining 0 and z and lying in G(0, ), along

~ which f @,
01-—|—|t|1+‘7' ‘

This path, deformed if necessary so that the part inside | z| = b is a straight line, is now
taken as the path of integration in (9-12). Let z, be its meet with | z| = 4. Then we have

Bde| k bt | dt| k
1 -3 |t f n
|B(‘92 | <3k.|z|" :f le}1+’ |;~+a, |*+|z|* zll_}_lt|1+m<|zl§'
(11-17)
Combining (11-16) and (11-17) and again adjusting £,, we find
P .
B (6 = G(¢ 11-18
l n( 3z)|<1_{_lz|% (Z€ (’77)) ( )

(cf. the fourth of (11-8)).
Next, from (9-10) we have

2zB,, = fod, +f1 41+ ... +fodo— A, — B, (11-19)
Substituting (11-2), (11-11), (11-14) and (11-18), we find that

| 22B.(0,2) | < (ze G(4,7)), (11-20)

1+| z|t

and with the aid of the maximum-modulus theorem we deduce that

’ 5 11-21
| By(0,2) | < 15|2]t (ze G(0,1)) (11-21)
(cf. the fifth of (11:8)).
Again, differentiation of (11-19) yields
2B = & (fodytfy Ayor oo Sy o) — 47— 3B, (11-22)
Since rtfiyes o | < [ P, (2 GOD), (11-23)

we deduce by application of Cauchy’s integral formula and the maximum-modulus theorem
that k

1+]|z|n
(cf. (11-9) and the analysis from (11-12) to (11-14)). Also, we have

(ze G(6,7)) (11-24)

d
CT_Z (f;')An"}_.flAn—l+ oo +f;tA0) <

4,(0,8)
” (9 = — dz. 11-25
Ai(6,2) = M) izl =k3-ple-t (E—2)° ( )
Hence | 4,,(0,z )|<1_}_k| B (ze G(0,7)). (11-26)

Substituting the last two inequalities and (11-21) in (11-22), we obtain

k, k, k,

| 2zB;(0, z) |<1’|‘|Z|‘"+1+|Z|§<1+|Z|‘"

(2 G(6,1)), (11-27)
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since o, <% (cf. (9-15)). Hence
|Bi(0,2) | < 1

5[z (2GO:m) (11-28)

(cf. the sixth of (11-8)).
Finally, we substitute (11-2), (11-18) and (11-28) in (9-11), with s replaced by s—1, to
obtain '
14| z|tHo

The lemma is now established from the relations (11-9) and (11-29) by induction.

| 4(60,2) | < =R (2eG(0,n)). (1129

12. EQUATION SATISFIED BY THE TRUNCATED SERIES
‘For brevity, we shall write v=u%. We define

(6’ 2) | Pioz) <t B,(6,2)

| L,(u,0,z) = P(vz) 20 = go " (12-1)
(cf. (6-1)). Then we have
d m=1C (0, z 0,z , 0,z) B, 00,z
S Ln(w0,2) = RS, 22+ AulB I o) § 2E B 257 29
(cf. (6-2)), and
512 L,(u,0,2)—{u?z+f(u,0,2)}L,(u,0,z) = R, (u,0,z) (12-3)
(cf. (6+4)), where R, (u, 0, z) is regular in D(f) and is given by
R, (u,0,2) = Py(vz) RD)(u, 0, z) +v=2Pi(vz) R2(u, 0, 2), (12-4)
E, A4, _,+2zB,_,+B,_, A, m A
RY(w,0,2) = u2( $ p Fnes 2 omatInnr ) L) Wz (29)
R2(u,0,z) = uz( S s F 2A :;nB 2_{_IZ$:1) (u2z+7) 2 (12-6)
The inequality (9-2) implies that |
f,0,2) =" L —TFn__ eD(),uzay), (127)

s= o U’ 1+|Zl'}+") m
where | w | <1. Substituting (12-7) in (12-5) we find that the coefficients of u2, u, ..., u~™*1 all
vanish as a consequence of (9-10) and the first of (9-9), and with the aid of ( 11- 2) and
(11-8) we may verify that

| RO(u,0,2) | < — L&

mﬁ (Z€ G(ﬁ),u)uo). (12'8)
1k,
1+ | z |1+o'1 ym—1

Similarly | R2(u,0,z) | < (ze G(0),u>u,). (12-9)

Substituting (12-8) and (12-9) in (12-4) and using the inequalities

|P1<z>l<k'e’fi(|jﬁ)' |Pi(2) | <k(1+ |21} |exp (—3h) | (Jargz]<m), (12-10)
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502 F. W. J. OLVER ON THE
(Olver 19544, (4-5)), we deduce (cf. (6-7)) that
(1 1 1 1+4]vz|? }k
— 2yt = Zm
|Rm(u,0,z) |<| CXp( 3uz ) I{I—I—IUZ Ii 1+|Z|%+‘”+U* 1+Izll+a'1 um
2y
lexp (=8| 1 K ), usay). (12:11)

1+|oz|t 14|z |ttoum

13. Proor oF THEOREM B
A proof only for j = 1 will be recorded. Exactly similar proofs can be formulated for the
casesj = 2, 3; alternatively, the results for these cases can be deduced from that for j = 1 by
appropriate changes of the variables. We first suppose that a; =aq, () is a point of G(f)which
is not at infinity.
Let us write ;
B¥(0,2) = (1+|z[}) B,(0,2),  C¥0,2) = (1+]|z[})~1C(0, 2). (13-1)
Setting z = a,, we see from (11-8) and (9-7) that
| 4,(0,a)) | <k,, | B¥(0,a)) | <k,  |C¥0O,a))|<k, |D(0,a) <k, (13:2)

Therefore by the lemma of § 4 functions 4(u, §), B*(u, ), C*(u,§) and D(u, ) exist having
the asymptotic expansions

A, 0) ~ SAS(Z,S %) Br(y,0) ~ 03*(0 ) |
| o (13:3)
cx(w0) ~ 3 FOm)  pug 5 20N,

as u—> + 00, uniformly valid with respect to §. We define W] (4, 0, z) to be the solution of the
differential equation (9-1) satisfying the conditions

Pi(va,) B*(u,0)
v 14| I%’

Wi(u, 0, a,) = Py(vay) A(u,0) +
(13-4)
[d W, (u, 0, z)] P,(va,) (1 +] a, |}) C*(u, 6) +vP{(va,) D(u,0),

(cf. (7-3)). From (9-1) and (12-3) we have at once

& (D)~ L)}~ 2 1 (2} (D) — Ly (D)} = — Ry (2), (13:5)

the arguments « and ¢ being suppressed.

Let z, be a point of the region common to H,(6), defined in §9, and the sector S;+S,,
defined in Olver 19544, § 4. Then as a consequence of condition (iv) given at the end of § 9,
the path Z joining z, and ¢, must also lie in S, +S,; in particular, a,e S; +S,. This is clear
from figures 1 and 2 of Olver 19544. Let { be a typical point of the path. By analogy
with (7-5) we define the sequence of functions 4, ,(4,0, z,,{) =h,, ,({) by 4, ,({) = 0 and

n® = [ B00) P (o)~ B0D) B0} (0 () R0}l
T, B0+ B0) (131),  (13:6)

o edm
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where the path of integration is the part of # between { and a,, and «,,, §,, are determined by
the conditions

hm,n(al) = W(a;) —L,(a,), h;n,n(al) = Wi(a,) — L;,(ay). (13-7)
Differentiation of (13-6) and use of the Wronksian relation
P, (v0) Py(v0) — Py(v) Py(v0) = e ¥rif(2m) (13-8)
yield the differential equation
St =0 (O =D Byt Ro) (121). (13:9)

From (13-6) and (13-7) it is seen that
%, By (vay) 44, Py(vay) = Wi(a,) — L, (ay), }
2, Py (va) + B, By (va,) = v {Wi(a)) — Ln(a,)}-

These equations show that a,, and f,, are independent of #. Solving with the aid of (13-8), we
find

(13-10)

a, = 2m ¥ Py(vay) (Wi (a,) — L, (a,)}—v~'Py(va, ){W{(al) —La(a)}], } (1511)
P = 2m edri[v=1P  (va)) {Wi(ay) — Li(a))}— Pi(vay) {Wi(ay) — Ly(a,)}]-
From (12-1), (12-2) and (13-4) we obtain

W;(‘ll)—Lm(al)=Pl(val){A(u,0) g (0, “1)}+

P (vay) {B*(u, 0) _»’”“Bs(ﬁ, al)},

v? 14 l a; |‘} s=0 us

Wi(ay) —L.,(ay) = P,(vay) {(1+Ia1 o, 0)—"S C(a a) A6, al)}

s=0 um

us um+l

+oPi(0a,) [D(a, )~ 3 BOa)_Buerlf01))
Using these equations, the inequalities (12-10), the expansions ( 13-3) and thelemma of§ 11,
we may verify without difficulty that

kn |exp(—3ua}) | K, 11+]|va |t n | €xp(—Fudf) |

3
|,I/Vl(al) al)l < m+l ’ 1+|1)(ll Ii umv2 1+| I% |CXp( 3ua ) |<um+1 1‘|‘|Wl |i‘ )
| (13-12)
and
, k,14+|a k., ‘
| Wila)—Infa) < a‘”* | exp (—3ual) |+ 22, (1 + [vay 1) | exp(—Fual) |
<En (14 |vay ¥ exp (—udd | (13-13)

Substituting (13-12) and (13-13) in (13-11), and using (12-10) and the corresponding
inequalities | expzt|
P jhsi0 <aty
I 2(2)|< 1+|zli.

the region of validity of which includes S, +S,, we find that

| P(2) |[<k(1+]|z[*) |exp gt |, (13-14)

|t | <K 3, | B | <kyum¥ | exp (—4ual) |. (13-15)

63 ‘ VoL. 250. A.
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504 F. W. J. OLVER ON THE
With the aid of (13-14), (12-10) and the relations
| exp (—3utt) |> | exp (—3utt) | > | exp (—Fua)) |, (13-16)

obtained from condition (iv) on £ given in § 9, we deduce from (18-15) that

2%
| PA(00) + B Pa(00) | < o L P i,,,z"é ) (13-17)

(cf. (7-10)).
Next, we have from (13:6)

b1 (§) = — f {Py(00) Py(08) — Py(00) Po(v)} Ry (&) e+, P(00) + B, Pof0C). (13:18)

Using (12-10), (12-11), (13-14) and (13-16), we readily show that

k, |exp (Zul®—4utt)| 1 b,  |exp(—%ul?) |
W (14| o |B) (L4 ot [H21 4| ¢|Fror um (1 [0l [}) (14| £]1)

2 edn

| o(v) Pi(v0) R,,(8) | <0

and

k, |exp(—3ul? | 1 Ky | exp (—3ug?) |
| At Bl & <t)|< w" (L [of [}) (L[ ot )2 L ¢ [ ~um (Lol [} (L[] o)

Substitution of the last two results and (13-17) in (13-18) yields

() | < LB | € Ldt] 0 o Joxp (=3l | _kky | cxp (—4udd)|
m, 1\5. ym+3$ 1-|—|1}C|i’ | a11+|t|l+°" um+§ 1—|—|0€|i v ym 1+|v§|i ’
(13-19)

as a consequence of (9-21).
From (13-6) we also obtain

o0~ 1(©) = 2 [* (B0 B 0) — P 00) ROV () B (0. (13:20

From (11-1) and (13-19) we can show that |vf(f) %, ,(?) | satisfies the inequality (12-11)
which bounds | R,,(¢) |. It follows immediately that

k2 k,,|exp (—3ul?) |
i, 0) ) < 5 2 P T

2medm

and continuing the argument by induction we obtain
nilf i
| hm,n+l(C) "“}lm n( ) I < (U:) I exp ( ué’ ) l

w14 g [t
where £,, and £ are independent of .
Differentiation of (13-6) yields

(n=0,1,...), (13-21)

B (§) = —2m b [ (PL00) Py(0) — Pi(00) Pfot)} By(8) -+ 2,0PL(00) + B, 0PH00),
and Ky i1 ()~ ()
— 2t [ (P(60) Py(0)~ Pi00) Po0)}S0) i, )~ aea(8} . (0321).


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 505

Substituting by means of the inequalities (11-1), (12-10), (12-11), (13-14), (13-15), (13-21)
and using (9-21) and (13-16), we readily show that

i r(©) @) 1< () B 1 o 1) [ xp (3| (w=0,1,..). (13:22)

The inequalities (13-21) and (13-22) are the key results for this case and correspond to
(7-17) and (7-20), respectively, in case A. The series X{k, ,.,({) =%, ,({)} and
2 {lm, n11(8) — I, ()} clearly converge if > £, and carrying out an analysis exactly similar
to that between (7-20) and (7-31) we can prove that the sums of these series are W, ({) — L, ()
and W1({) —L,,({), respectively. Setting { = z, and taking v>2k in (13-21) and (13-22), we

obtain , ,
| Wi(2)—Lo(2) | <X | Wilz) —Lin(z)) | <F, (13-23)

k, |exp(—%uzd k.,
where X, = L] li(lv;ll;)', Y, =1 ozy ) Jexp (~gud) |, (13:29)

(cf. (7-32)).
In order to express the error terms in the forms implied by the equations (9-18) and (9-19),
we set | X, = XP.Py(v2)) + X2 .072(1+ | z, | 1Py (0z)),) (13-25)
Y, = YQ.P(vz)) (1+] 2, [}) + T2 .0Pi(vzy),
where (cf. (13-8))
XD = ometniPy(vz)) X, XP = —ometrivX(1+4|z [}) Py(vz)) X,
YO = ometri(14 |z, |})-1Py(vz) Y,,, Y@= —2mediv=1Py(vz,) 7,
With the aid of (13-14) and (13-24) we may show that
| XD | <kpumt, | XP|<k,umd,
(13-26)
| YR | <knumtd, YR <knumh,

The results (9-18) and (9-19) (with z = z;) now follow on changing m into m+1 and using
the lemma of §11. In an exactly similar manner, or by an appeal to symmetry, we can
establish the same results when z, is a point of the region common to H, (#) and S, + S,. This
completes the proof of theorem B for finite a,(6).

When q,(f) is at infinity the proof needs modification. The principal change is that
W,(u, 0, z) is now defined to be the solution of (9-1) with the conditions

lim {272 (vz)* exp (3uzt) Wi(u, 0,2)} = A(u,0) —u~'exp (¥ arga,) B*(u,0),
lim {e(uz) * exp (Buzl) (dd2) W (u, 6, 2)} = —o{A(u,0) —u~' exp ($iarg a,) B¥(s, 0)},
as z—>a,(f) along & (cf. (8:3)). The sequence £, ,({) is defined by (13-6) with £,, = 0 and

m 13 m— /
o, = A(u,ﬁ) _ z As(Z; al) _CXp ('2'1 argal) {B* (u, ‘9) _ Zl B;?(Z; al)}

s=0 u s=0

(cf. (8-5)). Other changes are similar to those given in § 8 for case A and do not need to be

recorded here.
63-2
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PART 3. CASE D
14. STATEMENT OF CONDITIONS AND THEOREM D

The standard form of differential equation for this case is taken to be

2

e %g—fdr{ L b, 2)|w (141)
(cf. (1-10)), in which « is a large positive parameter,  is a set of real or complex parameters
ranging over a set of values ©, and x is a real or complex parameter which ranges over
a bounded region M lying in the half-plane Re #>0. We suppose that the variable z ranges
over a simply-connected complex domain D(0, x), bounded or otherwise. Further, D(6, )
must contain the circle | z | <b, where b is positive and fixed, i.e. independent of u, § and .

We assume that f(u, 0, 4, z) is a regular even function of z in D (6, 4) and that

OO T e CLY2) R Sy S SO0 M (P

< us 1+|le+¢rum

valid when ze D (0, ), ue M, e © and u>u,, where u, is fixed. Here ¢ is fixed and positive,
- and each f,(0, 4, z) is a regular even function of zinD(f, #). Asin parts 1 and 2 the symbols &
and £, are used generically to denote numbers independent of 4, 8, z and also, in this case, z.

Following the analysis given in Olver 1956, § 7, we readily verify that formal solutions of
(14-1) are given by

w=z2,) 3 M08 20 ) $BOLD gy
32’— (1) 3 O824z, (ur) § DOLD), (14-4)

where Z, denotes the modified cylinder function of order . Here 4, = constant, 4, = con-
stant, and the higher coefficients are given by

2B, — —A§+fz(J%As+f1As_1+...+fs 0_2/4_+_1_ s) dz, (14-5)

24,., = 2’”—;_1 B.—B,+ f(foBs+les—1 +...+f,B,) dz+constant. (14-6)

In these equations the arguments 6, 4, z of A, B, and f; have been suppressed and primes used
to denote differentiations with respect to z. These two equations determine a set of functions

- which are regular functions of z in D(0, ¢), 4, being even and B, being odd. If the f, of odd
suffix vanish we can arrange that the same is true of both 4; and B,. The coefficients C; and
D, appearing in (14-4) are given by

C,= (u+1) 4+24,+2B, D, = A,—uz"'B,_,+B._,, (147)

and are regular even functions of z in D (0, x).
We prescribe G(0, #) to be a closed subdomain of D(6, #) which has the properties:
(i) G(0,p) contains the circle | z| <b.
(ii) The distance between each point of G (0, #) and each boundary point of D(f, x) has
a positive lower bound which is independent of § and 4.
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i) [l ﬁ"“l”m <k (2 G(0,4)), (14:8)
for some path lying wholly in G(6, #), where
| ¢, =min (o, 1). (14-9)
The arbitrary constants occurring in (14-6) are subjected to the condition
| A0, 4 c(0, 1)} | <k (14-10)

where ¢(0, ¢) is a prescribed point of G(0, #). The asymptotic nature of the formal series
(14-3) and (14-4) can now be expressed in the following theorem:

THEOREM D. The differential equation (14-1) possesses solutions W,(u,0,u,z) (j = 1,2) with the
properties

W;(u,ﬁ,/t,z)zzlﬂ(uz){ ZA‘—l—O(umH)}+§IF+1(uz){,§;B’—i— Hzlo(uim)}, (14:11)
c%m(u,o,ﬂ,z) I(uz)<— Zr(tz]) (m)}—l—uzlﬂ“(uz){sgouDs‘-I—O(umH)} (14-12)

W;(u,ﬂ,,u,z)=zK/t(uz){§0~u—j—i—0(u-m—ﬁ): 2Kﬂ+1(uz){m—lB‘—|— 2 0(5)), aes)

s=0 us 1 -+ l z '
d m_1C 1 D, 1
W, 0,4,2) = (uz){ S S (Lrlz)) O(u—m)}—uzl(ﬂ“(uz){z +0( mﬂ)} (14-14)
as u— + 00, valid when 0<®, ue M and ze H,(0, ). Here m denotes an arbitrary positive integer
or zero; the solutions are independent of m. Each of the O’s is uniform with respect to 6, u and z,
except that in the case j = 2 the part of M common to the annulus 0<|u| <0 is excluded, & being
an arbitrary positive number.

The regions of validity H;(d,x) and the branches of the modified Bessel functions are
defined as follows.

- H, (6, x) comprises those points z of G (0, #) which can be joined to the origin by a path 2
having the following properties, ¢ being a typical point of 2.

(i) 2 liesin G(0,4).

(ii) 2 comprises a finite number of Jordan arcs, each with parametric equation of the
form ¢ = #(7), where 7 is the real parameter of the arc; () is continuous and #(7) does not
vanish.

(iii) _de] <k. ‘ (14-15)

PLF[e]m |
(iv) Re ¢is monotonic as ¢ traverses £ from 0 to z. :
(v) Ift, { are any two points of # arranged in the order 0, ¢, {, z along £, then
[¢|<E|C]- (14-16)
Equations (14-11) and (14+12) then hold for ze H, (6, 4) uniformly with respect to all values
of arg z.
In the definition of H, (0, u) we suppose a(6, ) to be any prescribed point of G(6, x) which

is outside or on the circle | z| = 4, or the point at infinity on a straight line % lying in
G(0, ). In either event we impose the restriction

|arga(0,p) | <3m. (14-17)
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Then H, (0, #) comprises those points z of G (0, #) which can be joined to a(0, ) by a path 2
having the properties (i), (ii), (iii) listed above for the case j = 1; in addition # must
coincide with & for all sufficiently large | ¢ |, should a(, ) be at infinity. In place of (iv) and
(v) we have:

(iv) Re ¢is monotonic decreasing as ¢ traverses & from a(f, x) to z.

(v) If¢, { are any two points of Z arranged in the order g, ¢, {, z along 2, then

| E|<k|z]. (14-18)

If Re z>0 the branches of the modified Bessel functions K, (uz) and K, (uz) in (14-13) and
(14-14) are the principal ones. If Re z<0 the branches are determined by 7 < argz<$w
or —im>argz> —3m according as £ intersects the positive or negative imaginary axis.

15. REMARKS ON THEOREM D

Remarks (i) and (ii) made in § 3 in connexion with case A apply equally well here to the
conditions (14-8) and (14-15) provided, of course, that we stipulate uniformity with respect
to u. Corresponding to § 3 (iii) we have:

(iii) If the inequality (14-2) holds only for m<< M, where M is a fixed positive integer or
zero, then equations (14-11) to (14-14) hold for m<<M—1. They also hold for m = M
provided that the error terms O(1/u™) appearing in (14-11) and (14-13) are changed to
O(1[uM-1), »

We also make the following observations:

(iv) Forj = 2, condition (v) implies that # cannot pass through the origin; this is seen by
taking ¢ = 0 in (14-18). From this result and condition (iv) we see that # cannot intersect
both the positive and the negative imaginary axes. Thus there is no ambiguity in the choice
of branch of K, (uz) and K, ,(uz). If, however, for a given point z(Re z<0) two alternative
paths & exist which satisfy conditions (i) to (v) and intersect the imaginary axis on opposite
sides of the origin, then equations (14-13) and (14-14) hold for both {7 <argz<$m and
—In>argz> —3m.

(v) An investigation has not been made of the necessity of the condition that the
annulus 0< | x| <4 be excluded from the p-region of uniform validity when j = 2. This
would appear to require the use of a sharper inequality for the Bessel function K,(z) than
(16-2) given below. We may note however that since 4 = 0 is not excluded we can show,
bvy proper choice of 4, that equations (14-13) and (14-14) hold for any fixed value of .
Alternative forms of error terms which hold uniformly throughout M, including the
annulus, are given by equations (19-14) and (19-15).

16. Bounps FOR THE BESSEL FUNCTIONS

We require bounds for the modified Bessel functions /,(z) and K,(z) which are uniformly
valid with respect to bounded x in the half-plane Re #>0. These are afforded by the fol-
lowing results which are extensions of the inequalities for fixed # given in Olver 1956, §9:

|L(2) | <kV,(2) (neM, |argz|<dm), (16-1)
|K,(2) | <kX,() (ueM, |argz|<in), (16-2)
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|2%e? ] 1+]z]*]e7?]

Here V.(z) =

o e P (16:)
L =2 (<o, @ =1 iz, (164
where a=Reu(>0), (16+5)

and ¢ is an arbitrary positive number in the range 0<d<4. In (16-1) and (16-2), £ denotes
a generic number independent of  and z; the £ of (16-2) depends on é.
These results may be proved as follows.

Large z. An examination of the analysis given in Watson 1944, §7-2 reveals that the
asymptotic expansions of Hankel for the Hankel functions H{(z) and H?(z) when |z| is
large, are uniformly valid with respect to v and arg z when ve M and

—7m+e< argz<2m—e¢ (in the case of HY(z)),
—2n+e<argz<m—e (in the case of H?(z)),

where ¢ is an arbitrary fixed positive number.
Hence we derive (Watson 1944, § 7-23)

I(2) = 0(1) + e-ztrdm {—%n+e<argz<%7r—e(uppersign)} (16-6)
» (2 )1} (2mz)? —3nm+e<argz<}m—e (lower sign)
3
and K,(z) = (2%) e*0(1) (|argz|<$n—e), (16:7)

as | z| - o0, where the O’s are uniform with respect to # and arg z.

Equation (16-6) enables us to prove (16-1) when |z|>«, where «(>0) is assignable
independently of # and arg z. Similarly, (16:7) establishes (16-2) when |z|>«k and
| arg z | <3m—e; the extension to | arg z | <3 is achieved with the aid of the formula

K, (2) = e*#mK (ze*m) L mil (ze*m). (16-8)

Bounded z. When | z| <« we use the series definitions

_ _(39* 1z)4 .
L(1+u) [ +1'(1+,u 2'(14;) CE R ] (16-9)
(32)* )? (32)*
L T T(1—p) [l+l'(l—ﬂ 21(1—p) (2—p) +'°°]’ (16:10)
and K,(z) = }mcosecun{l_,(z) —L(2)}, (16-11)

the limit being taken in (16-11) when g is an integer.
Since Re #>0 it follows that |s+x|>s5 (s =1,2,...), and from (16-9) we obtain

156 |<|p

1+((;i'f§: Egl,{2+ ]<k|z|“ (16-12)

when |arg z| is bounded. This enables us to complete the proof of (16-1).
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The proof of (16-2) is more complicated and we divide the region M into three parts.
(i) Suppose first that x lies on or outside the circles

|g—n| =8 (n=0,1,2,...). (16:13)

Only a finite number of these circles lie in M, and since § < they do not overlap.
Clearly | s—pu| >4 for all positive integer values of s. Hence, from (16:10) we obtain

(32)~* [ ?K)z (3¢)* ] e
L&) [ <|Fr =g |1+ 10 2'52+ <klz™
since | arg z | is bounded. Using this result, (16:12) and the fact that | cosec | is bounded
here, we see from (16-11) that |K,(2) | <k|z|- (16-14)

(ii) Next suppose that, for some positive integer #,
| u—n|<é. (16-15)

For fixed z, other than zero, the function z#K (2) is a regular function of x inside the circle
(16-15), whilst from (16:14) we see that its modulus is bounded (independently of z) on the
circumference. Hence by the maximum-modulus theorem

| K, (2) | <k|z#|<k|z|™ (16-16)
throughout the circle.
(iii) Finally, suppose that x lies in the semi-circle
|#|<d, Rep=0. (16-17)
We write K (z) = §n{z~rKP(z) +2#KP(z) + K(2)}, (16-18)
where . r— )
(. — 2-u(2) —1)(2) ® z)—z7 Mz K9(z zh=zy
Kp(e) = T2, s = S @) = S 200,

Clearly K{P(z) and K{?(z) are regular functions of x inside the circle | z|<4, whilst their
moduli are bounded on the circumference. Applying the maximum-modulus theorem

again, we deduce that | | K9(2) |, | K2(2) | <k (16-19)

throughout the circle.

For the remaining function we write
er—e*
KP(z) = InzI(z) = N

sin ,mr x

> (16-20)

—eX .
©l<kelResl <k|z|-% (16-21)

where x = ylnz. Clearly

when g lies in the semi-circle (16-17). Hence we have

| K®(2) |<k|lnz||z|*<ki(z) |z|‘°‘ (16-22)
where l(z):lnlﬁillzl ' (16-23)

(cf. (16-4)), and is a decreasing function of | z|. From this result and (16-18), (16:19), we
obtain | K,(2) | <k|z |-+ k| z |4 kl(2) | 2|2 <kl(2) | 2| (16:24)
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All regions of M have now been covered. Combining (16-14), (16-16) and (16-24), we see

that
2 |K,(2) | <kl (2) | 2| (ueM,|z|<k, |argz|<}m), (16-25)

where [ (z) is defined by (16-4). This completes the proof of (16-2).
Inequalities for products. Using (16-1) and (16-2) we can prove that the inequalities (9-12)

given in Olver 1956 are uniformly valid with respect to ge M, provided that ,(2) 1s deﬁned
as in the present paper.

17. PRELIMINARIES IN THE PROOF OF THEOREM D

The proof of theorem D follows the pattern of the proofs of theorems A and B given in
parts 1 and 2, and we shall record only the principal steps.

(1) Bounds Jor the coefficients

LeEmMA
’ ks " ks
lAs(ﬁnu,z) |<ks3 |As(0,ﬂ,Z) l<m, iA (0 s ) l IW" (17 1)
k, , k,
lBs(ﬁ,ﬂ,Z) |<ks) |Bs(0 /l,Z) |<iT|:‘z—"_|1+o-l3 IBS(ﬁ,ﬂ,Z) |<W,

when ze G(0, y).
This is the extended form of lemma 2 given in Olver 1956, and may be proved by the
same method (cf. also §§ 5 and 11 of the present paper).

(ii) Equation satisfied by the truncated series
Let L, (u,0,u,z)=L,(z) be defined by the equation

m As z m-—l:Bs v o
Lm(Z) = Zgﬂ(uZ)sgo 'u—s'-l—& g‘u,‘_l(uZ) sgo E s (1 7‘2)

in which the arguments 8, ,u,z of A, and BS have béen-s‘uppressed. Then

, m=1C 1A A:,, Ds B 1B -
Lm(z)zgﬂ(uz){zo s+(ﬂ+ )unrzn"‘z }_-{_ng +1(uz){ 2+ uﬁfl R (17’-3)

and by analogy with §§ 6 and 12, L (z) satisfies a differential equation of the form

AR RO

f2))Lal@) = Raf2), (17-4)

where f(z) =f(u, 0, #, z). The function R, (z) =R, (u,0, s, z) can be expressed in the form

R,(2) = 22, (uz) R(2) + 2%, ,(uz) R2(2) (17:5)
(cf. (12-4)), where R®(z) = R®(u, 0, #, z) and R2(z) =R2(u,0, u, z) are regular functions of
z in D(4, ), satisfying :

IR2(2) |, | R2(2) | <+ p i

k
I_—T—_I_Zl—l—'*';l Z (ZG G’(H,‘u), u?uo). (17'6)

64 VoL, 250. A.


http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

L

_\r
NI
olm
~ =
oY)
o)
= uw

%

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

512 | F. W. J. OLVER ON THE

18. PROOF FOR THE SOLUTION W]

We define W,(u,0,u,z)=W;(z) to be the solution of the differential equation (14-1)
satisfying the conditions

R ¢ T .
lim {z-#-1W,(z)} T+ 2) A(u, 0, p), (18-1)
lim {z-#W{(2)} = (1 + ) (e A(u, 0, p) (18-2)
1 F(l + /l) s Vs fb)s
as z-> 0 along any straight line, where 4(u, 0, #) is a function having the asymptotic expansion
A(uo,) ~ 3 Ll 0) (18:3)
s=0

as u— -+ 00, uniformly valid with respect to § and x (cf. §4).

For a given A(u, 0, x) the solution W, (z) exists; moreover, no other solution of (14-1) can
exist with the properties (18-1) and (18-2) as z— 0 along a given straight line. These state-
ments can be proved by considering the forms of a fundamental pair of solutions w,(z),
wy(z) of (14-1) in the neighbourhood of the origin, given by

wy(2) = z'*44,(2),
wy(z) = 2'"mp,(2) (20%0,1,2,...),
wy(2) = 21, () + 2 Inzy, () (Bu=0,1,2,..),

where ¢,(2), ¥,(z) and y,(z) are regular functions of z with the properties

$,(0)+0,  §,(0)+0 (4+0),  x(0)*0,

(cf. Copson 1944, §§10-12 and 10-15). Since Re >0 it is clear that z=#~1w,(z) cannot tend
to a finite limit unless Re z = 0 and g+ 0. In the latter event we can easily show that w,(z)
cannot satisfy both (18-1) and (18:2) as z— 0 along a given straight line.

From (14-1) and (17-4) we have

%{M(Z) —Lm(Z)}——% %{W;(z) —Lm(z)}_{u2+/z2;1

@2~ Lu(2)} = —Ru(2),

7 (18-4)
with & = I'in the definitions of L,,(z) and R,,(z).

Let z, be a point of the region H, (0, ), defined in § 14, and suppose that
(p—3) n<argz,<(p+3¥)m, (18:5)

where p is an arbitrary integer. Then condition (iv) of § 14 shows that the postulated path 2
joining z; and the origin must also lie in the sector (18:5). We define the sequence

hm, n(u’ 0’ Hs 2y C) Ehm,n(g) by /Zm, 0(€) =0 and

. (¢ . .
P, n(8) =€ e“””"fo {L,(u) K (ute™?) — K (ul &™) L, (ut) }{ f (?) hyp, -1 () — R,,(2)} it
, +a,lL,ul) (n>1), (186)
where the path of integration is the part of Z between { and 0, and

| m A(0,40
4y = Al 0)— 3 400, (18-7)
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 513

The branches of the Bessel functions occurring in (18:6) are determined by continuity and
the condition (p—3}) n<arg{<(p+13) 7.
Extending the analysis given in Olver 1956, § 12, we may show that

@~ @) | < () o [ emm |7 ut) (n= 01,0, (189)

and | (O~ [ <(;) s 2 D V() (2 =0,1,.),  (189).

U

where V, is defined by (16-3), {'={e~#7i, and here and elsewhere in this section the generic
numbers kand £,, are independentof p as well asof 4, #, x and z. From these 1nequa11t1es and
the equation

B ©) = Pl = (1455 Y0 QbR (1510

obtained by differentiation of (18-6), we deduce that

o © = (@) 1< (5 s eormt | L 7 ), (18-11)

The parametric equation of # is of the form
{={(r) (ro<7<T), | (18-12)

where 7y, 7, correspond to 0, z,, respectively. Term-by-term integration of the series

S(r) = 2 [Honr (1)} — A ifE(7)}] (18-13)

iMs

0

multiplied by {'(7) is valid over the interval (7,7,) if 7>7, and «>k. Hence we obtain
L] 8000 dr= 5 sz~ a2} £ 0) drt 3 s (@) ~hmalz)}
= 3 Urnnrll(r)} = E7)}] = T,

say. Differentiation of this result and use of (18-10) enable us to show that 7°(7) is a solution
of the transformed form of the differential equation (18-4) which results from the substitu-
tion z = {(7). Hence we deduce that

T(r) = WHl(M}=L, ()} T'(0[E(1) = WFLI—La{l(n},  (18:14)
when 7, <7<7;, where W (z) is the solution of (14-1) satisfying the conditions
Wi(z) = L,(2))+ T(r),  W¥(z) = Lu(z) +H{T'()/{' ()} (18:15)

We now examine the limiting form of 7(7) as 7—>7,. The part of £ lying inside the circle
| z | <b may be deformed into a straight line without infringing conditions (i) to (v) of § 14.
Accordingly, for all 7,<7<7(€), assignable, we have

g(r) dt
64-2
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where ¢ is an arbitrary positive number. With this restriction on 7 we may repeat the analysis
used to establish (18-8) and (18-9) from (18-6), and thence deduce that

3 s (O ~ (O}~ L, 00)| <2 | Lt T ()

and

3 onsi(0) (O}~ (0+1) L(00) 4T (00} | <20 5 | b | (1| )T 00,

when u>>2£, (cf. (8-11) and (8:12)). Therefore

e (@G WL (3u)"
i Q)70 = 3, lim A (14 (e e (1817
Substituting these equations and the limiting forms of L,{{(7)} and L, {{()}, obtained from
(17-2) and (17-3), in (18-14), we see that W¥{{(7)} and W3¥'{{(7)} satisfy the conditions
(18-1) and (18-2) with z replaced by {(7). Therefore Wi (z) = W,(z).

If u> 2k, we derive from (18~8) and (18-9)

| Wi(z,) — L, (2,) | <2k, u="1| z, et |V, (uz)), (18-18)
and | Wi(z,) — Lm(zl) | <2k,,u~m=1 | etrmi| (14| uz, | )V, (uz}), (18-19)

where z{=z, e~#7.. The error terms can be expressed in the forms givenin (14-11) and (14-12)

by setting 2z

Z eﬁﬂmn(uz ) V(l) Zy I (UZI) + V2 *‘(IW“—I‘ ,H,l(uzl), (18‘20)
etrmi(14|uz, | )V (uzy) = VP.(1+| 2, |) L(uz)) + VP uz D,y (uzy),  (18:21)
where
Vi =V, (uz}) [, (uzh) V@ =0 (Juz|<1), } (18:22)
Vi = uzi K, (uz) V,(uz1), Ve =u*(1+|z,|) K,(uz1) V,(uz1)  (|uz,|>1),
' 1+ ]|uz | 1+|uzy | V2
@) — 1l po @ _ 1 .
and Ve T+z| Vi, Ve = e u2' (18-23)
Using (16+1), and (16-2) and the inequality
1 _— _
T <k WM, [zl <) (18-24)

which can readily be established by use of (16-9), we can prove that
| V/(}’ |,u=2| Vl?)l,‘u—ll V/is)'l and | V,flp\l
are bounded. We see immediately that (14:11) and (14-12) hold if the term O(1/u™)

occurring in the former is replaced by O(1/um~!). The final form is obtained on changing
m into m—+-1.

19. PROOF FOR THE SOLUTION W,

We suppose first that a=a(0, g) is a point of G(f, ) which is not at infinity.

We write C.(0, 1,2)

C¥bpz) = /i_!_lzfl 5

(19-1)
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 515
and define A(u, 0, u), B(u, 0, 4), C*(u, 0, ) and D(u, 0, ) to be functions with uniform expan-
sions for large positive  typified by

A, b, ~ 5 Llme), (19-2)

s=0 u
Then Wy(u, 0, u, z) =W,(z) is defined to be the solution of the differential equation (14-1)
satisfying the conditions
Wy(a) = aK,(ua) A(u, 0,4) — (afu) Ky, (uc) B(a, 0, ), }
Wila) = (1+|a| ) K, (ua) C* (u, 0, p) —uaK,,,, (ua) D(u, 0, ).
Let z, be a point of the region H,(, #), and let { be a typical pointof the path £ joining z,

and a. In the expressions for L, and R,, given in § 17 we take EZ’ K,Z,.=—K,,. The
sequence £, ,({) is then defined by 4, o({) = 0 and

i l©) = €[ UG,(0E) T, (0t) — ,0) K (W)L (8) e () — Ro(8)}
onlL, () +BulK, () (121),  (194)

where the path of integration is the part of # between ¢ and a, and «,,, f,, are constants. The
branches of the modified Bessel functions have their principal values at a, and elsewhere are
determined by continuity.

The constants «,, and f,, are determined by the conditions

hnn(@) =Wy(a) =Ly(a), k(@) = Wa(a) —Ly(a), (19-5)
when 7> 1. This implies that
O = (UK, 11 (ua) — (p+1) a7 K, (va) }{Wy(a) — L, ()} + K, (ua) {Wé(a)—LZn(a)},} (19-6)
P = 11 (ua) + (p+1) @711, (ua)} (Wy(a) — L,,(a)} — 1, (ua) {W3(a) — Lyy(a)}-

Substituting by means of the inequalities (16-1) and (16-2), and using the fact that | a | >b,
we can show that ‘

(19-3)

| | <k [ua | {X,(ua)2, | B | <kpumt. (19-7)

Using (19-7) and extending the analysis given in Olver 1956, § 13, we may show that

k\" k .
r(© ~ a0 1< ;) 2211 X, (), (19-8)
/ k\"
s @ O 1< () ot (3,0 + [ 4| Xoa (1) (199)
; . kK" k, 14|u

and hence that | Fpi(0) (@) < () 2L x ) (19-10)

These are the key results. Using them we deduce that
WAL}~ Lfl(r)} = T()= 3 Uhp 0} L)1, (19-11)
WAL} —Lafl(n)} = T"(1)[C'(7) =n§0 Uz, §(r) — i, o£8(7)315 (19-12)

when u> £, where {=C(1) (1o<7<T)) (19-13)

is the parametric equation of #.
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Thus if u> 2k we have
Wy(z1)—Lu(z:) | <2hpum | 2, X, uzy), (19:14)
| Wi(z)) — Lun(21) | <2k, 0™ (14| uz, | ) X, (uzy). (19:15)

To express the error terms in the form given by‘equations (14-13) and (14-14), we set
Xﬂ(uzl) = X/(l'l)_le (uzl) -I"X 'T_-I_Té—l KMl(uzl), (19'16)

(1+uz, |) X, (uz) = XD. (14| 2, |) K, (uz)) + X .0z, K, 1 (uzy), (19-17)

where XP, X?, X¥ and X{? are defined as follows. Suppose first | 4|>4, where ¢ is the
arbitrary positive number associated with the definition of /,(z) (cf. (16-4)). Then

X =uz 1, (uzy) X, (uz)), } (|uz,|<1), (19-18)

X2 = w142, |) 1, (uzy) X, (uzy),

X = i%Kﬂﬂ(uzl e¥m) X, (uz,),
| (luz; [>1), (19-19)
, ‘
X2 — 4 M K, (uz, ™) X, (uz,),
1—}—|uz| 1+ |uz, | X2
@ _ 1 (1) @ . 12211 % 19-

and X/l, 1+lz1| .X Xﬂ 1+|z1| u2 (19 20)

The upper signs are taken in (19-19) if 0< arg z, <2 and the lower if —37< arg z;<0.

Alternatively suppose that = 0. Then we define X{P and X by equations (13-25)
and (13-26) of Olver 1956, replacing X{? by «~2XP, and X9, X by equations (19-20)
above.

Using (16:-1) and (16-2) we can prove that | XP|, 4=2| X2|, »~!| XP| and | X | are
bounded. Changing m into m+-1 we complete the proof of (14-13) and (14-14) when a is
not at infinity.

When « is at infinity modifications have to be made to the proof which are similar to those
given in § 8 for case A. The solution W,(z) is determined by the conditions

lim {(2u/nz)} exsW,(z)} = A(u, 0, 1) —u=' B(u, 0, 4),
lim {(2umz)t €= Wy(2)} = —ud(u, 0, 4) +B(u, 6, ),
as z—>a along the straight line . The sequence 4,, ,({) is defined by (19-4) with &, = 0 and

B = A, 0,)— 3 A8 Ly g SBLLOY - 10.99)

s=0 w s=0 us

(19-21)

Other modifications are straightforward. Equations (19-14) and (19-15) again hold and the
remainder of the proof is unchanged.

The author wishes to acknowledge the assistance of his colleague Mr G. F. Miller who
checked the manuscript of this paper and made many valuable suggestions.

The work described above has been carried out as part of the research programme of the
National Physical Laboratory, and this paper is published by permission of the Director of
the Laboratory.
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